WISCONSIN MATHEMATICS, SCIENCE & ENGINEERING TALENT SEARCH

PROBLEM SET V (2023-2024)

February 2024

1. Initially, each entry in a 4×4 table is equal to 0. In each step we can choose a 2×2 subtable and increase each of the four numbers in that subtable by one. Decide if the following table can be obtained in a finite number of steps.

3	4	3	2
6	11	11	4
4	12	11	5
1	3	5	3

- 2. Maya wrote down a power of two on the board. Ian wrote down a different number by rearranging the digits of Maya's number. Show that Ian's number cannot be a power of two. (Ian cannot move a zero digit to the first position.)
- **3.** We have a geometric progression of n positive integers with $n \ge 2$. (This means that the ratio of each two consecutive integers in the progression is the same.) Show that the average of all the n terms in the progression cannot be greater than the average of the first and last term of the progression.
- 4. There are 2024 triangles in the plane so that any two of them intersect with each other. Show that we can draw a straight line that intersects all the triangles.
- 5. A baker baked a rectangular pie and cut it into n^2 rectangles by making n-1 vertical cuts and n-1 horizontal cuts. (*n* is at least 2.) The areas of the resulting pie pieces rounded to the nearest integers are equal to all the natural numbers from 1 to n^2 in some order. What is the greatest *n* for which this is possible? (Semi-integer numbers are rounded upward.)

You are invited to submit a solution even if you get just one problem. Please do not write your solutions on this problem page. Remember that solutions require a proof or justification.

Find old and current problems and information about the talent search at:	http://www.math.wisc.edu/tal	ent
Find an introduction to techniques for solving problems like these at	https://go.wisc.edu/551pe6	

Return To Or Email To	MATHEMATICS TALENT SEARCH Dept. of Mathematics, 480 Lincoln Drive University of Wisconsin, Madison, WI 53706 talent@math.wisc.edu		Deadline March 12, 2024		
Please Fill In	PROBLEM SET V	P	roblem	Score	
Name & Grade			1		
School & Town			2		
Home Address			3		
Town & Zip			4		
Email Address			5		
Teacher's Name					
Teacher's Email					