1. Find all positive integers n so that $\frac{1}{n}$ is the repeating decimal $\frac{1}{n} = .abcabcabc \cdots = .\overline{abc}$ with a, b and c distinct digits between 0 and 9.

2. In the figure, $ABCD$ is a straight line with $AB = BC = CD = 2$. Also $FA = DE = 2$, $BE = 4$, and $FC = CE$. Compute the distance FB.

3. Consider the sequence of integers $x_1 = 34$, $x_2 = 334$, $x_3 = 3334$, \ldots, $x_n = 33\cdots334$, \ldots where the first n digits of x_n are 3s and the units digit is a 4. Compute the number of digits that are equal to 3 in the number $9(x_n)^3$.

4. Do there exist infinitely many triples (x, y, z) of real numbers which satisfy the system of equations

$$x^2 + xy + y^2 = y^2 + yz + z^2 = z^2 + zx + x^2 = 3$$

Justify your answer.

5. Suppose

$$1 = \frac{1}{a_1} + \frac{1}{a_2} + \cdots + \frac{1}{a_m}$$

where a_1, a_2, \ldots, a_m are distinct positive integers. If the largest of the a_is is equal to $2p$ for some prime p, find the set $\{a_1, a_2, \ldots, a_m\}$.

You are invited to submit a solution even if you get just one problem. Please do not write your solutions on the problem set page. Remember that solutions usually require a proof or justification.

RETURN TO: MATHEMATICS TALENT SEARCH DEADLINE
Dept. of Mathematics, 480 Lincoln Drive March 13
University of Wisconsin, Madison, WI 53706 2000

(Please Detach)