WISCONSIN MATHEMATICS SCIENCE & ENGINEERING TALENT SEARCH

SOLUTIONS TO PROBLEM SET III (1998-99)

1. An operation \square is defined on the set of positive integers, so that if x and y are any two positive integers, then $x \square y$ is also a positive integer. Assuming that \square satisfies the three conditions listed below, for all positive integers x, y and z, compute $5 \square 9$ and justify your answer.

 \[
 x \square (y + z) = (x \square y)(x \square z) \\
 (x + y) \square 1 = (x \square 1) + (y \square 1) \\
 (x + y) \square 2 = (x \square 2) + 4(xy \square 1) + (y \square 2).
 \]

 SOLUTION. By the second equation above, we get $2 \square 1 = (1 \square 1) + (1 \square 1) = 2a$ where $a = 1 \square 1$. Similarly, $3 \square 1 = (1 \square 1) + (2 \square 1) = a + 2a = 3a$, and continuing like this, we see that $n \square 1 = na$ for every positive integer n. We can now use the first of the given equations to show that $n \square 2 = (n \square 1)(n \square 1) = (na)^2$. Similarly, $n \square 3 = (n \square 1)(n \square 2) = (na)(na)^2 = (na)^3$, and continuing like this, we deduce that $n \square m = (na)^m$ for all positive integers n and m. In particular, $2 \square 2 = 4a^2$.

 We can also compute $2 \square 2$ from the third of the given equations. Indeed, if we plug in $x = 1 = y$, we get $2 \square 2 = (1 \square 2) + 4(1 \square 1) + (1 \square 2) = a^2 + 4a + a^2$. We now have $4a^2 = 2 \square 2 = 2a^2 + 4a$, so $2a^2 = 4a$. Since $a \neq 0$, this yields $a = 2$, and thus $m \square n = (2n)^m$. In particular, $5 \square 9 = 10^9$, or 1 billion.

2. In the figure, the line segments AB, CD and PQ are common tangents to two given circles, where points A and C are on one of the circles, B and D are on the other circle and points P and Q are on AB and CD, as shown. Prove that $PB = QC$.

 SOLUTION. Let U and V denote the points of tangency of PQ with the two circles, as shown. Also, let $PB = x$, $QC = y$, $AP = r$ and $DQ = s$, as indicated in the figure. Note that $AB = CD$, so that we have $r + x = s + y$. Also, $PV = PB = x$ and $PU = PA = r$, and it follows that $UV = r - x$. Similarly, $QU = QC = y$ and $QV = QD = s$, and this yields $UV = s - y$. We therefore have $r - x = s - y$. If we subtract this from our earlier equation, which was $r + x = s + y$, we get $2x = 2y$, and thus $x = y$, as desired.

3. (New Year’s Problem) If $n > 1$ is an integer and if we write

 \[
 S_n = \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \cdots + \frac{1}{\sqrt{n}},
 \]

 show that $2\sqrt{n} + 1 - 2 < S_n < 2\sqrt{n} - 1$. Deduce that the number $S_{1,000,000}$ lies between 1998 and 1999.

 SOLUTION. First, we show that $2\sqrt{n} + 1 - 2 < S_n$ for all integers $n \geq 1$. This inequality certainly holds when $n = 1$ since $2\sqrt{2} - 2 < 1$. We will show that if the desired inequality holds for some value of n, then it automatically holds for the next value of n. Since we know that it holds
for \(n = 1 \), it will follow that it holds for \(n = 2 \), and thus for \(n = 3 \), and so on, for all positive integers \(n \). (In other words, we are using the principle of mathematical induction.)

We assume, therefore, that \(2\sqrt{n+1} - 2 < S_n \), and we add \(1/\sqrt{n+1} \) to both sides to get

\[
2\sqrt{n+1} - 2 + \frac{1}{\sqrt{n+1}} < S_n + \frac{1}{\sqrt{n+1}} = S_{n+1}.
\]

Observe that \((2\sqrt{n+1} + 1/\sqrt{n+1})^2 > 4(n+1) + 4 = (2\sqrt{n} + 2)^2\). It therefore follows that \(2\sqrt{n+1} + 1/\sqrt{n+1} > 2\sqrt{n} + 2\), and consequently

\[
S_{n+1} > 2\sqrt{n+1} + \frac{1}{\sqrt{n+1}} - 2 > 2\sqrt{n+2} - 2.
\]

Similarly, we prove by induction that \(S_n < 2\sqrt{n} - 1 \) for every integer \(n > 1 \). This certainly holds when \(n = 2 \), and we assume that it holds for some particular value of \(n \), so that \(S_n < 2\sqrt{n} - 1 \). Adding \(1/\sqrt{n+1} \) to both sides yields

\[
S_{n+1} < 2\sqrt{n} + \frac{1}{\sqrt{n+1}} - 1.
\]

But \((2\sqrt{n+1} - 1/\sqrt{n+1})^2 > 4(n+1) - 4 = (2\sqrt{n})^2\), so that \(2\sqrt{n+1} - 1/\sqrt{n+1} > 2\sqrt{n}\), and thus

\[
S_{n+1} < 2\sqrt{n} + \frac{1}{\sqrt{n+1}} - 1 < 2\sqrt{n+1} - 1,
\]

as desired. Finally, we plug in \(n = 1, 000, 000 \) and obtain \(1998 < S_{1,000,000} < 1999 \).

4. Let \(x, y \) and \(z \) be positive real numbers. Show that \((x+y)(x+z)(y+z) \geq 8xyz\).

SOLUTION. An easy computation shows that

\[
(x+y)(x+z)(y+z) = 2xyz + x(y^2 + z^2) + y(x^2 + z^2) + z(x^2 + y^2).
\]

Now \(y^2 + z^2 - 2yz = (y-z)^2 \geq 0\), and thus \(y^2 + z^2 \geq 2yz\). Since \(x > 0\), this yields \(x(y^2 + z^2) \geq 2xyz\). Similarly, we get \(y(x^2 + z^2) \geq 2xyz\) and \(z(x^2 + y^2) \geq 2xyz\). Combining these inequalities, we get \((x+y)(x+z)(y+z) \geq 8xyz\), as desired.

5. We construct a sequence of numbers \(A_1, A_2, A_3, \ldots \) in such a way that \(A_n + A_{n+1} = A_{n+2} \) for all subscripts \(n \geq 1 \). Suppose that \(A_2 = 3 \) and \(A_{50} = 300 \). Compute the value of the sum \(S = A_1 + A_2 + A_3 + \cdots + A_{48} \), and justify your answer.

SOLUTION. For all integers \(m \leq 48 \), write \(S_m = A_m + A_{m+1} + A_{m+2} + \cdots + A_{48} \), so that the quantity \(S_m \) to be evaluated is actually \(S_1 \). Observe that \(A_{m+1} + S_m = A_{m+1} + A_m + S_{m+1} = A_{m+2} + S_{m+1} \). In particular, taking \(m = 1 \), we have \(A_2 + S_1 = A_3 + S_2 \). If we take \(m = 2 \), we get \(A_3 + S_2 = A_4 + S_3 \). Continuing like this, we get

\[
A_2 + S_1 = A_3 + S_2 = A_4 + S_3 = \cdots = A_{49} + S_{48}.
\]

But \(S_{48} = A_{48} \), so this yields \(A_2 + S_1 = A_{49} + A_{48} = A_{50} = 300 \). Since \(A_2 = 3 \), we conclude that \(S = S_1 = 297 \).