1. Given two real numbers a and b, suppose that the average of their fourth powers is equal to the fourth power of their average. Show that the two numbers must be equal.

2. Let I be the center of the inscribed circle of $\triangle ABC$. Show that the center of the circumscribed circle of $\triangle BIC$ lies on the circumscribed circle of $\triangle ABC$.

3. Recall that a rational number is one that can be written in the form m/n, where m and n are integers. Suppose that a, b and c are positive rational numbers and that $\sqrt{a} + \sqrt{b} + \sqrt{c}$ is also rational. Show that \sqrt{a}, \sqrt{b} and \sqrt{c} are each rational.

4. Suppose that all the integers $n > 1000$ are divided into two sets A and B. Show that at least one of these sets contains two different numbers x and y such that $x + y$ is also in that set.

5. Recall that the Fibonacci numbers are $1, 1, 2, 3, 5, 8, \ldots$, where after the first two, each is the sum of the preceding two numbers. Write F_n to denote the nth Fibonacci number and let r denote the number $(1 + \sqrt{5})/2$. Prove that the ratio F_{100}/F_{99} is so close to r that the difference satisfies $|F_{100}/F_{99} - r| < 10^{-20}$.