1. Your calculator will tell you that $\sqrt[3]{6\sqrt{3}} + 10 - \sqrt[3]{6\sqrt{3}} - 10$ is approximately equal to 2. Is this quantity exactly equal to 2? Prove that your answer is correct.

2. Let $ABCD$ be a quadrilateral and let X, M, Y and N be respectively the midpoints of AB, BC, CD and DA. Show that the point P where XY and MN meet is the midpoint of each of XY and MN.

3. (NEW YEAR’S PROBLEM) Let m and e be positive integers and suppose that $N = 1997m/(m + 1997e)$ is an integer. Find all possible values for N.

4. I have a magic money machine into which I can put any number of one dollar coins. If I insert n dollars, the machine returns $2n$ dollars. Each time I use the machine, however, I must insert more money than I did on the previous use. If I start with exactly 1 and use the machine once, I will have 2. One my next use of the machine, I am forced to insert 2 yielding 4, and on my third use of the machine, I can insert either 3 or 4 yielding a total of 7 or 8. Consequently, there is no way that I can ever obtain exactly 3 or 5 or 6 by using the machine repeatedly, starting with 1. Find the largest integer L such that it is impossible to obtain exactly L dollars with the magic money machine, starting with 1.

5. Let S be a subset of the set $\{1, 2, 3, \ldots, 1000\}$ with the property that no sum of two distinct members of S is contained in S. Find the maximum possible number of members in the set S.

You are invited to submit a solution even if you get just one problem

RETURN TO: MATHEMATICS TALENT SEARCH DEADLINE
Dept. of Mathematics, 480 Lincoln Drive February 14
University of Wisconsin, Madison, WI 53706 1997

..
(Please detach)

<table>
<thead>
<tr>
<th>LAST NAME</th>
<th>FIRST</th>
<th>GRADE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCHOOL</td>
<td>TOWN</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HOME ADDRESS</th>
<th>TOWN</th>
<th>ZIP CODE</th>
</tr>
</thead>
</table>

PROBLEM SET IV