1. Prove that a prime number cannot be expressed as the sum of two or more consecutive positive odd integers.

2. From a 29×29 grid of unit squares we cut out ninety-nine 2×2 squares consisting the squares of the grid. Show that we can cut out one more!

3. A semicircle has a diameter XY on which points M and N lie. The semicircle contains points A, B, C, D such that $\angle AMX = \angle CMY = \angle BNX = \angle DNY$. Prove that $AC = BD$.

4. We have an infinite sequence of numbers f_1, f_2, f_3, \ldots which satisfy

$$f_{\frac{x+y}{2}} = \frac{f_x + f_y}{2}$$

whenever x, y and $\frac{x+y}{2}$ are all positive integers. (f_n denotes the element of the sequence at position n.) How many distinct values can appear in the sequence?

5. Show that

$$3 - \frac{1}{5^{2011}} < \sqrt{6 + \sqrt{6 + \sqrt{6 + \cdots + \sqrt{6 + \sqrt{6}}}}} < 3.$$

You are invited to submit a solution even if you get just one problem. Please do not write your solutions on this problem page. Remember that solutions require a proof or justification.