1. Given an integer \(n > 2 \), let \(S \) be the set of all integers \(m \) such that \(m + n \) is a divisor of \(m^2 + n^2 \). Show that the set \(S \) is finite and that the number of negative numbers in \(S \) exceeds the number of positive numbers in \(S \) by at least five.

SOLUTION. Of course, \(n^2 - m^2 = (n + m)(n - m) \), and so \(n + m \) is always a divisor of \(n^2 - m^2 \). If \(n + m \) also divides \(n^2 + m^2 \), then it divides \((n^2 - m^2) + (n^2 + m^2) = 2n^2 \). Conversely, if \(n + m \) divides \(2n^2 \), then it divides \(2n^2 - (n^2 - m^2) = n^2 + m^2 \). This shows that \(S \) is exactly the set of all numbers \(m \) such that \(n + m \) is a divisor of \(2n^2 \).

Now let \(D \) be the set of all integers (positive and negative) that divide \(2n^2 \). It follows that \(S \) is exactly the set of integers \(m \) of the form \(m = d - n \), where \(d \) is in \(D \). In particular, the number of members of \(S \) is the same as the number of members of \(D \), which is finite since \(n \neq 0 \). The number of positive members of \(S \) is exactly the number of members of \(D \) exceeding \(n \) and the number of negative members of \(S \) is the number of members of \(D \) that are less than \(n \).

Now if \(d \) is in \(D \) and exceeds \(n \), then \(-d \) is in \(D \) and is less than \(n \). In addition there are at least five members of \(D \) that are less than \(n \) that we have not yet counted, namely 2, 1, \(-1\), \(-2\) and \(-n\). These have not been counted since they are *not* the negatives of numbers exceeding \(n \).

2. In the figure, \(\triangle ABC \) is isosceles, with \(AB = AC \) and \(\angle A = 36^\circ \). Point \(X \) on side \(AB \) and point \(Y \) on side \(AC \) are chosen so that \(AX = BC = CY \). Prove that \(BY \) and \(CX \) are perpendicular.

SOLUTION. Since \(\angle B = \angle C \) and \(\angle A = 36^\circ \), it follows that each of \(\angle B \) and \(\angle C \) is \(\frac{1}{2}(180^\circ - 36^\circ) = 72^\circ \). We argue that \(CX \) is the bisector of \(\angle C \). To see this, let \(CZ \) be the angle bisector, so that \(\angle ZCA = \frac{1}{2}(72^\circ) = 36^\circ = \angle A \). Thus \(\triangle ZAC \) is isosceles and \(AZ = ZC \). Also, \(\angle BZC \) is the exterior angle of \(\triangle ZAC \) at \(Z \), and hence \(\angle BZC = \angle A + \angle ZCA = 36^\circ + 36^\circ = 72^\circ = \angle B \). It follows that \(\triangle ZBC \) is isosceles, and \(BC = ZC \). Since we saw previously, that \(ZC = AZ \), we conclude that \(BC = AZ \). Thus the point \(Z \) is actually \(X \). This shows that \(CX \) is the angle bisector, as claimed.

Now \(BC = CY \), and thus \(\triangle BYC \) is isosceles. But then the angle bisector at \(C \) is the same as the altitude to side \(BY \), so \(BY \) and \(CX \) are indeed perpendicular.

3. Find all solutions in positive integers \(a < b < c \) to the equation \((a + b + c)^2 = a^3 + b^3 + c^3\).

SOLUTION. Since \(0 < a < b < c \) are integers, we have \(b \leq c - 1 \) and \(a \leq c - 2 \). Therefore \(a + b + c \leq 3c - 3 \) and \(a^3 + b^3 + c^3 = (a + b + c)^2 \leq (3c - 3)^2 = 9(c - 1)^2 \). It follows that

\[
a^3 + b^3 \leq 9(c - 1)^2 - c^3 < 9c^2 - c^3 = c^2(9 - c).
\]

Since \(a^3 + b^3 \) is positive, we have \(c \leq 8 \), and hence \(3 \leq c \leq 8 \). For the six integers in this range we evaluate \(9(c - 1)^2 - c^3 \) and obtain the numbers 9, 17, 19, 9, -19 and -71, respectively. But \(9(c - 1)^2 - c^3 \geq a^3 + b^3 \), so \(c \neq 7 \) and 8. Furthermore, \(b \) cannot be as large as 3, since \(3^3 = 27 \) exceeds these six numbers. Thus \(b \leq 2 \), so \(a = 1 \) and \(b = 2 \). By trying the four remaining possibilities for \(c \), namely \(c = 3, 4, 5 \) and 6, we see that only \(c = 3 \) satisfies the given equation with these values of \(a \) and \(b \). In other words, the unique solution is \(a = 1, b = 2 \) and \(c = 3 \).
4. Suppose that for each integer \(k \geq 1 \), we have an unlimited supply of rectangular \(2 \times k \) tiles. Given an integer \(n \geq 1 \), write \(a(n) \) to denote the number of ways that a \(2 \times n \) rectangle can be covered using our tiles. It is clear, for example, that \(a(1) = 1 \), and a little experimentation shows that \(a(2) = 3 \) and \(a(3) = 6 \). Compute \(a(7) \).

SOLUTION. Suppose that the given \(2 \times n \) rectangle is oriented so that the sides of length \(n \) are horizontal, and consider the tile or tiles touching the left edge of the rectangle. First consider the case where this left edge touches just one tile, say a \(2 \times k \) tile, with its side of length \(k \) oriented horizontally. In that case, after the \(2 \times k \) tile is placed, there remains a \(2 \times (n-k) \) rectangle still to be covered, so there are \(a(n-k) \) ways to complete the job. Of course, if \(k = n \), there is just one way to complete the job, do nothing. Thus, it is convenient to define \(a(0) = 1 \). Now \(1 \leq k \leq n \), and so after the leftmost tile is placed, the total number of ways that the tiling can be completed is \(a(n-1) + a(n-2) + \cdots + a(1) + a(0) \), corresponding to \(k = 1, k = 2 \), and so on, through \(k = n \).

We have not yet counted all \(a(n) \) possible ways to tile our \(2 \times n \) rectangle because the left edge may be touching *two* tiles, each of size \(2 \times 1 \), with the sides of length 2 oriented horizontally. This leaves \(2 \times (n-2) \) rectangle still to be covered, and this can be done in \(a(n-2) \) ways. Our complete count is therefore

\[
a(n) = a(n-1) + 2a(n-2) + a(n-3) + \cdots + a(2) + a(1) + a(0).\]

If we subtract this from the corresponding formula for \(a(n+1) \), we get \(a(n+1) - a(n) = a(n) + a(n-1) - a(n-2) \), and thus \(a(n+1) = 2a(n) + a(n-1) - a(n-2) \) for \(n \geq 2 \). We know that \(a(2) = 3 \), \(a(1) = 1 \) and \(a(0) = 1 \). Thus \(a(3) = 2a(2) + a(1) - a(0) = 6 + 1 - 1 = 6 \), \(a(4) = 2(6) + 3 - 1 = 14 \) and \(a(5) = 2(14) + 6 - 3 = 31 \). Continuing like this, we get \(a(6) = 2(31) + 14 - 6 = 70 \) and finally, \(a(7) = 2(70) + 31 - 14 = 157 \).

5. Find all pairs of positive numbers \(x \) and \(y \) such that \(x^3 - y^3 = 100 \) and both \(x - y \) and \(xy \) are integers.

SOLUTION. Write \(n = x - y \) and \(m = xy \), so that \(n \) and \(m \) are integers. Since \(x^3 - y^3 = 100 \), we see that \(x > y \), and thus \(n \) is positive. Also, since \(x \) and \(y \) are positive, it follows that \(m = xy \) is positive. We have

\[
100 = x^3 - y^3 = (y + n)^3 - y^3 = 3ny^2 + 3n^2y + n^3 = 3ny(y + n) + n^3,
\]

and because \(y + n = x \) and \(xy = m \), this yields \(100 = 3mn + n^3 > n^3 \). Since \(5^3 = 125 \) exceeds 100, we see that \(n \leq 4 \). Also, \(100 = n(3m + n^2) \), and so \(n \) is a divisor of 100, and thus \(n \neq 3 \). If \(n = 2 \), then \(50 = 3m + 4 \), and \(m = 46/3 \), which is not an integer. The surviving possibilities, therefore, are \(n = 1 \) and \(n = 4 \), and we get \(m = 33 \) and \(m = 3 \), respectively.

If \(n = 1 \), the equation \(3ny^2 + 3n^2y + n^3 - 100 = 0 \) becomes \(3y^2 + 3y - 99 = 0 \), and so \(y^2 + y - 33 = 0 \). The quadratic formula yields \(y = (-1 \pm \sqrt{133})/2 \), and since \(y > 0 \), we have \(y = (\sqrt{133} - 1)/2 \) and \(x = y + 1 = (\sqrt{133} + 1)/2 \). It is easy to check that \(x^3 - y^3 = 100 \) and \(xy = 33 \), as wanted. If \(n = 4 \), our quadratic equation becomes \(12y^2 + 48y - 36 = 0 \), and so \(y^2 + 4y - 3 = 0 \). This yields \(y = (-4 \pm \sqrt{28})/2 = -2 \pm \sqrt{7} \). Because \(y > 0 \), we must have \(y = \sqrt{7} - 2 \) and \(x = y + 4 = \sqrt{7} + 2 \). We again check that \(x^3 - y^3 = 100 \) and \(xy = 3 \), as required.