1. For how many integers \(n \) is the quantity \(n^2 - 20n + 244 \) equal to a perfect square?

2. In the figure, \(\triangle ABC \) is equilateral and \(P \) is some point in the interior of the triangle. Perpendiculars \(PR \), \(PS \) and \(PT \) are dropped from \(P \) to the sides of the triangle, and lines are drawn from \(P \) to the vertices \(A \), \(B \) and \(C \). Show that the sum of the areas of the three shaded triangles is exactly half of the area of \(\triangle ABC \).

3. Find all positive real numbers \(x \), \(y \) and \(z \) such that
 \[
 x = \frac{1 + z}{1 + y}, \quad y = \frac{1 + x}{1 + z}, \quad z = \frac{1 + y}{1 + x}.
 \]

4. Find a positive integer \(n \) such that the following is necessarily true: Suppose I have \(n^2 \) stones, each of which is either red, white, blue or green, and suppose that I place one of these stones at the center of each of the \(n^2 \) boxes of an \(n \times n \) square grid. Then there must exist a stone such that both its row and column contain another stone of the same color.

5. Let \(S \) be a finite set and recall that two subsets \(X \) and \(Y \) of \(S \) are said to be disjoint if they have no elements in common. Suppose that a collection \(A \) of subsets of \(S \) has the property that no two of the sets in \(A \) are disjoint but that every subset of \(S \) that is not in \(A \) is disjoint from some member of \(A \). Prove that \(A \) contains exactly half of the subsets of \(S \).

You are invited to submit a solution even if you get just one problem. Please do not write your solutions on the problem set page. Remember that solutions usually require a proof or justification.