1. Let m be a positive integer and suppose that $4m + 1 = u^2 + v^2$, where u and v are integers. Show that there exist integers a and b such that $m = \frac{a^2 + a + b^2 + b}{2}$.

2. In $\triangle ABC$, the points U and V trisect side BC, points W and X trisect side AC, and points Y and Z trisect side AB. Points P, Q and R, as shown, are intersection points of lines joining vertices A, B and C to the trisection points on the opposite sides. Prove that the sides of $\triangle PQR$ are parallel to the sides of $\triangle ABC$.

3. Let a, b and c be positive numbers. Show that

$$\frac{a^2}{b} + \frac{b^2}{c} + \frac{c^2}{a} \geq a + b + c.$$

4. (New Year’s Problem) How many pairs of positive integers a and b are there such that $a < b$ and $\frac{1}{a} + \frac{1}{b} = \frac{1}{2001}$?

5. Let S be a set of 100 positive integers, each less than 200. Show that there exists a nonempty subset T of S such that the product of all of the numbers in T is a perfect square.

You are invited to submit a solution even if you get just one problem. Please do not write your solutions on the problem set page. Remember that solutions usually require a proof or justification.

RETURN TO: MATHEMATICS TALENT SEARCH
Dept. of Mathematics, 480 Lincoln Drive
University of Wisconsin, Madison, WI 53706

DEADLINE: January 8, 2001

(Please Detach)